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1 Introduction 
 
The pervasiveness of security vulnerabilities in commercial off-the-shelf (COTS) 
computer systems has prompted much research in building survivable (or intrusion 
tolerant) distributed services.  In this approach, COTS systems are composed to 
implement a distributed service that is robust to successful attacks on these individual 
components.  The research literature has documented significant strides in the 
development of such services (e.g., [21][22][4][12]), and we ourselves have constructed 
software to implement such distributed services in a previous DARPA program, namely 
the Fleet survivable object store [16].  Despite the successes described in the research 
literature, significant obstacles remain to the deployment of this approach on a wide 
scale. 
 
The high-level goal of this research program was to address what we perceive as the most 
challenging obstacle, namely vulnerability to client compromise.  As a simple example, 
consider a distributed service that implements the abstraction of shared files, and does so 
“survivably” in that it masks the corruption of individual file servers from clients.  
Despite this, if a client with authority to write to a file is compromised, then this client 
can arbitrarily overwrite the file, effectively corrupting every server and rendering the file 
useless to the application that requires it. 
 
Our goal in this research was therefore to extend the Fleet system to include defense 
against corrupt clients.  Our efforts focused on clients that are driven by a human user, 
and that should be disabled if the client device falls out of physical possession of that 
user.  This is a category of client that is only becoming more important, especially with 
the widespread deployment of mobile devices such as programmable mobile phones and 
PDAs, and with the anticipated deployment of wearable computing devices.  Indeed, if 
our experience with laptop computers and mobile phones is any indication, then these 
devices will be stolen frequently.  And, the importance of defending against captured 
wearable computers in battlefield situations should be obvious. 
 
To defend against captured clients, we applied techniques we have developed that permit 
the client device to perform cryptographic operations (e.g., to digitally sign a request to 
modify an object) only after the device has convinced a remote server, here called a 
capture-protection server, that the device is still in the possession of the correct user 
[14][15].  Our techniques are particularly powerful in that the capture-protection server is 
untrusted; even if compromised, it does not pose a threat to the cryptographic keys of the 
device (unless the device is also captured).  These techniques are also powerful in that 
they permit a device to delegate from one capture-protection server to another, so that 
subsequently the second server is authorized to perform the capture-protection function 
for that device [15].  Using delegation, the device can ensure that it has a capture-
protection server in relatively close proximity at all times, so as to minimize the latency 
of interacting with the server in the course of performing cryptographic operations. 
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The integration of these techniques with Fleet promises to significantly harden Fleet 
against this important class of threats.  At the same time, however, it offers opportunities 
for improving our capture-resilience techniques.  This potential is best understood by 
considering the specific function of a capture protection server, i.e., to confirm that the 
device remains in the possession of a legitimate user before permitting it to perform a 
cryptographic operation.  Presuming a password is used to perform this confirmation (as 
in [14][15]), the server must limit the number of incorrect guesses against the device's 
password, lest it permit an attacker who has captured the device from progressing too far 
in an online dictionary attack.  When servers are dynamically authorized, however, this 
may widen the window of vulnerability to such an attack: If the attacker captures the 
device, then it can mount an online dictionary attack against each currently authorized 
server, thereby gaining more password guesses than any one server allows.  A second 
security challenge arises from the feature that a capture protection server can be disabled 
for a device if the device is captured, even if the attacker has compromised the user's 
password.  Delegation also poses challenges to disabling: If the device and password are 
compromised, and if there is some authorized server when this happens, then the attacker 
can delegate from this authorized server to any server permitted by the policy set forth 
when the device was initialized.  Thus, to be sure that the device can never use its key 
again, every server in this “admissible” set must be disabled for the device. 
 
A proper solution to these problems would be for the capture-protection servers to 
coordinate among themselves, e.g., to inform each other of the incorrect password 
guesses that have been made by a device.   A focus in this document is the design of such 
an architecture that supports secure data sharing among capture protection servers in a 
way that reverses the negative effects of delegation.  As a result, the number of password 
guesses permitted against a captured device is unaffected by the number of servers 
authorized for the device, and disabling the device at one authorized server has the effect 
of disabling the device at all servers.    However, with these benefits come significant 
costs to availability, in that the failure of any authorized capture-protection server can 
indefinitely prevent the device’s use of its cryptographic keys. 
 
Fortunately, using the capabilities of Fleet to build highly survivable capture-protection 
servers, we can largely eliminate this availability concern in the capture-protection 
infrastructure.  Due to its implementation using Fleet, each capture-protection server will 
remain available despite benign and even malicious faults (hostile penetrations) of a 
fraction of its replicas, by virtue of the Fleet replication and replica coordination 
protocols.  Fleet thus enables the adoption of this coordination architecture in critical 
applications, while simultaneously benefiting from it. 
 
In addition to improving security, our capture-protection architecture exploits “locality of 
reference” by a mobile user, in two respects.  First, our approach imposes communication 
overhead only when the device switches from using one capture protection server to 
using another; after one interaction to perform a cryptographic operation with the new 
server, there is no additional communication overhead for subsequent operations.  
Second, if delegation patterns follow a user's travels, the communication overhead of 
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switching servers is typically incurred only between the new server and the previous one; 
there is no need to retrieve data from a distant “home location” or a designated server.   
 

2 Related work 
 
Online services that play a role similar (though not identical) to that of a capture 
protection server include the modified Kerberos server of Yaksha [11], a semi-trusted 
mediator [2], and a security mediator in server-aided signatures [10]. These servers are 
interposed in the critical path of a user performing cryptographic operations using her 
private key, and thereby can disable a private key that should no longer be used.  To our 
knowledge, no prior effort other than that from which we build [15] has proposed a 
notion of delegation from one server to another, and consequently the issues that we 
attempt to address here have not been previously considered in these other efforts. 
 
At the basis of our capture protection infrastructure for coordinating capture-protection 
servers is a novel protocol for achieving mutually exclusive access to a mobile object.  
Our protocol was inspired by prior algorithms for similar goals (e.g., 
[19][18][4][8][1][20][25][3][6]), but at the same time differs from them in significant 
ways. First, we assume a dynamic network topology determined by delegation patterns, 
whereas most prior work on distributed mutual exclusion for mobile objects (e.g., 
[19][18][8]) builds on static topologies.  Second, we permit Byzantine node failures [13] 
within our attacker models (a requirement for survivable systems), while most prior 
efforts in fault tolerant mutual exclusion for mobile objects deal with only benign node 
failures (e.g., [4][1][20][25][3][6]). 
 

3 Background in capture protection 
 
In this section we present background in capture protection, and then develop our 
coordination protocols for capture protection servers in Sections 4−6.  To simplify the 
discussion in these sections, we will avoid discussion of Fleet-specific matters and 
presume that capture protection servers are non-replicated.  We will return to the 
implementation of these techniques in Fleet (in which capture protection servers are 
implemented as replicated Fleet objects) in Section 7. 
 
A capture protection system consists of a device dvc and an arbitrary number of 
computers called nodes, each denoted nd. Each node can host (execute) multiple logical 
capture protection servers.  A server is denoted by svr, typically with additional 
subscripts or other annotations.  In our system, the device is used for generating digital 
signatures1 (e.g., using RSA [23]), and does so by interacting with one of the servers over 
a public network. The signature operation is protected by a password π.  The system is 
initialized with public data, secret data for the device, secret data for the user (i.e., π), and 
                                                 
1 The device can also be used for decrypting messages, however, for simplicity we only deal with 
signatures here, as this is the most pertinent in the context of Fleet. 
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secret data for each node. The public and secret data associated with a node are simply a 
certified public/private key pair for the node, which are assumed to be established well 
before the device is initialized.  We denote the public key of a node nd by pknd, and its 
private key by sknd.  Each svr has a public key pksvr that is simply the public key pknd of 
the node nd executing svr. 
 
The device-server protocol allows a device operated by a user who knows π and enters it 
correctly to sign a message with respect to the public key of the device, after 
communicating with one of the servers.  The device is initialized with one server 
available to it, denoted svr* and executing on node nd*, though the device can cause a 
new server to be created on another node via delegation.  For dvc to deploy a new svr on 
a node, another existing server svr′ must consent to delegating its authority to that node, 
after verifying that the creation of a server on that node is consistent with policy 
previously set forth by dvc (see below for details) and is being performed by dvc with 
the user's password. In this way, delegation is a protected operation just as signing is. The 
device can unilaterally revoke a server when it no longer intends to use that server. A 
node can be disabled (for a device) by being instructed to no longer respond to that 
device or, more precisely, to requests involving the device's key. 
 
Here we will not specify a policy that determines the nodes to which dvc can delegate, 
here called the admissible nodes, though we do assume that the public key of such a node 
can be determined reliably. The policy that defines admissibility is user-tunable and must 
be set when dvc is initialized. An example policy might allow delegation to any node 
with a public key certified by a given certification authority.  (Note this would also justify 
our assumption that the public key of an admissible node could be determined.)  For such 
a policy, the admissible nodes are not known in advance and can change over time. Our 
approach is specifically designed to accommodate such flexibility. 
 
Each attacker we consider controls the network; i.e., the attacker controls the inputs to the 
device and every node, and observes the outputs.  Moreover, an attacker can permanently 
compromise certain resources.  The resources that may be compromised by the attacker 
are any of the nodes, dvc, and π.  Compromising reveals the entire contents of the 
resource to the attacker and permits the attacker to impersonate it.  The one restriction on 
the attacker is that if he compromises dvc, then he does so after dvc initialization and 
while dvc is in an inactive state⎯i.e., dvc is not presently executing a protocol on user 
input⎯and the user does not subsequently provide input to the device.  This decouples 
the capture of dvc and π, and is consistent with our motivation that dvc is captured while 
not in use by the user and, once captured, is unavailable to the user. 
 
We formalize different aspects of the system described thus far as a collection of 
operations. 
 

• dvc.delegate(svr, nd): dvc performs a delegation with server svr, using the 
correct password π,  to deploy a new server on nd.  

• dvc.revoke(svr): dvc revokes svr, indicating it will not be using svr in the 
future. 
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• nd.disable: nd stops responding to any requests from dvc (signing or 
delegation). 

• dvc.comp: dvc is compromised. 
• nd.comp: nd is compromised. 
• π.comp: the password π is compromised. 

 
We note that nd.comp compromises all servers ever hosted by nd.  When convenient, we 
will use svr.comp to denote nd.comp where nd is the node hosting svr. 
 

4 Overview of algorithms 
 
Here we provide only the essentials of how the delegation and signature protocols of [15] 
work.  The capture protection system requires a device initialization phase, for which the 
device dvc takes as input its private key skdvc, the password π, and the identity of node 
nd* with public key pknd*. The output of initialization is a ticket τ* and an associated 
authorization record authrecτ* containing secret information for the device. τ* is a 
ciphertext encrypted under pknd* by dvc, the plaintext for which is generated as a 
function of π, a secret stored in authrecτ*, skdvc, and an “inner ticket” ζ* that is itself a 
ciphertext encrypted under pknd*. 
 
Cryptographic operations by dvc require that dvc use a ticket τ and authorization record 
authrecτ to induce the creation of a logical server at the node nd able to decrypt τ for 
processing requests bearing the ticket τ; we denote this server by svrτ.  (In particular, 
svr* = svrτ*.)  nd initializes state for svrτ including a counter svrτ.ctr ← 0 for counting 
requests bearing τ but reflecting incorrect password guesses. 
 

 
Figure 1: svrτ.doOperation algorithm adopted from [15] 

 
dvc can then interact with svrτ to either sign messages or delegate.  To do so, dvc 
generates a request req as a function of π and the secret stored in authrecτ, as well as the 
request parameters: The message m to be signed if a signature operation, or the identity 
and public key pknd′ of nd′ if delegating to nd′.  dvc then invokes 
svrτ.doOperation(req), which proceeds as in Figure 1. As shown, svrτ first determines 
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if: req and τ were created using different dvc secrets (line 2 of Figure 1); the password 
mistype counter svrτ.ctr is already at its maximum, qsvrτ (line 4); or req and τ were 
created using different passwords (line 6). If any of these conditions occur, the request is 
aborted (lines 3, 5, and 8). Otherwise the request is processed according to the 
req.opType field (which is a string constant, either sign or delegate) and a response 
is returned (lines 9−12). 
 
If a signature operation, dvc completes the signature for m upon receiving a valid 
response from svrτ.  If a delegation to nd′, the response enables dvc to generate a ticket 
τ′ encrypted under pknd′.  In this case, the inner ticket ζ′ is generated by svrτ and sent to 
dvc for inclusion in τ′.  ζ′ is used to convey secret information from svrτ to the yet-to-be-
created svrτ′. 
 

4.1 Security 
 
We say that svrτ is authorized at time t if either (i) τ = τ* or (ii) at some t′ < t and before 
dvc.comp, dvc performs dvc.delegate(svr′,nd) with a svr′ authorized at time t′ to 
obtain output 〈τ, authrecτ〉, and no dvc.revoke(svrτ) occurs before t.  In (ii), svr′ is the 
consenting server.  In contrast to [15], svr* is always authorized by (i).  We motivate this 
in Section 5. 
 
We divide attackers into four nonoverlapping classes, based on what they compromise 
and when.  We assume an attacker falls into one of these classes non-adaptively, i.e., it 
does not change its behavior relative to these classes depending on system execution. 
 

A1. An A1 attacker does not compromise dvc. 
A2. An A2 attacker compromises dvc, does not compromise π, and compromises 

no server authorized at the time of dvc.comp. 
A3. An A3 attacker compromises dvc, does not compromise π, and compromises 

some server authorized at the time of dvc.comp. 
A4. An A4 attacker compromises both dvc and π, but does not compromise any 

admissible node. 
 
The security goals achieved in [15] against these attackers are as follows: 
 

G1. An A1 attacker is unable to forge signatures for dvc. 
G2. An A2 attacker can forge signatures for dvc with probability at most q/|D|, 

where q is the total number of queries to authorized servers after dvc.comp, 
and D is the dictionary from which the password is drawn (assumed uniformly 
at random). 

G3. An A3 attacker can forge signatures only if it succeeds in an offline dictionary 
attack on the password. 

G4. An A4 attacker can forge signatures only until all admissible nodes are disabled 
for dvc. 
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These properties can be more intuitively stated as follows. If an attacker does not capture 
dvc  (A1), then the attacker gains no ability to forge for the device (G1).  On the other 
extreme, if an attacker captures both dvc and π (A4)⎯and thus is indistinguishable from 
the user⎯but does not compromise any admissible nodes, then it can forge only until all 
admissible nodes are disabled (G4).  The “middle” cases are if the attacker compromises 
dvc and not π.  If it compromises dvc and no then-authorized server is ever compromised 
(A2), then the attacker can do no better than an online dictionary attack against π (G2).  
If, on the other hand, when dvc is compromised some authorized server is eventually 
compromised (A3), then the attacker can do no better than an offline attack against π 
(G3). 
 

5 Goals 
 
As motivated in Section 1, our high-level goal for coordinating capture protection servers 
is to improve G2 and G4 from Section 4 (while keeping G1 and G3 unchanged).  First we 
motivate our improvements to G2.  This property bounds the probability that an A2 
attacker can forge signatures for the device, as a function of the total number q of 
password queries that the attacker can make to authorized servers after capturing the 
device.  In a straightforward implementation, each server svr would individually limit the 
number of guesses to some number qsvr, and refuse to respond once svr has received qsvr 
queries from dvc with the wrong password.  In this case, if A is the set of authorized 
servers when dvc is captured, then the number of queries that the attacker can make is q 
= Σsvr∈A qsvr.  Since servers are authorized dynamically, G2 provides little assurance 
without an additional mechanism to bound q, i.e., while qsvr is limited, q may not be.  So, 
one goal is to regain the ability to limit q explicitly: 
 

G2+. An A2 attacker can forge signatures for dvc with probability at most q̂ /|D|, 
where q̂  is a prespecified constant and D is the dictionary from which the 
password is drawn. 

 
Our second goal pertains to G4.  As already noted, the number and identity of admissible 
nodes is not required to be fixed, and it seems most advantageous for it to be specified 
more fluidly (e.g., “all nodes certified by one of these three certification authorities”).  
Thus, disabling all admissible nodes, as required in G4, is a challenge. Even if the set of 
admissible nodes could be determined, disabling each of them may require interacting 
with potentially hundreds of far-flung nodes all over the world. Therefore, a second goal 
that we adopt here is to remedy this problem, by making one successful disable 
operation at nd* imply that dvc is disabled at all admissible nodes: 
 

G4+. An A4 attacker can forge signatures only until the time at which nd* is disabled 
for dvc. 
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6 Design 
 
Our strategy for achieving G2+ and G4+ is to maintain a shared counter ctr for dvc that 
records the number of incorrect password guesses made globally against dvc.  A server 
can access this counter using three operations: read, increment, and maximize; see 
Figure 2. Intuitively, read enables a server to read the current value of ctr, so that the 
server can refuse to interact with dvc if ctr = q̂  thus enforcing G2+.  Upon an 
unsuccessful password guess from dvc, a server will increment ctr.  In addition, when 
nd* is disabled for dvc it invokes maximize to set ctr to q̂ , and then no server will 
respond to dvc, enforcing G4+. 
 

 
Figure 2: svrτ.read, svrτ.increment and svrτ.maximize algorithms; can be invoked only locally 

 

6.1 Mutually exclusive access 
 
We strive to support concurrent requests for a counter from multiple servers to allow 
disabling a compromised device while the attacker is using it, and to permit maximum 
flexibility in legitimate uses of the device's private key (e.g., device cloning).  To ensure 
the counter's consistency, our implementation enforces mutually exclusive access. 
 

 
Figure 3: svrτ.initialize algorithm; invoked locally by the node hosting svrτ 

 
The protocol we propose for ensuring mutually exclusive access consists mainly of the 
svrτ.initialize and svrτ.retrieve functions shown in Figure 3 and Figure 4.  svrτ.initialize 
is invoked by a node when τ is first submitted to it, and svrτ.retrieve can be invoked 
either by svrτ itself or remotely by another server.  In a nutshell, each authorized capture 
protection server maintains a pointer⎯here called an arrow and denoted svrτ.arrow⎯to 
the server from which it received the last request for access to the counter.  That is, if 



 

 9

svrτ receives a request for the counter, then svrτ requests it from svr′ ← svrτ.arrow (line 
4 in Figure 4) by invoking svr′.retrieve() (line 12 or 15).  It also sets svrτ.arrow to be the 
identity of the requester, denoted caller in Figure 4 (line 5). caller is authenticated by 
means that will be discussed in Section 6.2, so that if caller = svr′′ and svr′′ is not 
compromised, then svr′′ performed this method invocation. Upon receiving the counter 
in response to the svr′.retrieve() request, svr returns the counter to caller (line 17).  
Figure 5 shows the effects of a retrieve request initiated by a server svr. 
 

 
Figure 4: svrτ.retrieve algorithm; can be invoked locally or remotely (by another server) 

 
We emphasize that svrτ.retrieve() may be invoked concurrently, e.g., by multiple remote 
servers.  For simplicity, the psuedocode of  Figure 4 and subsequent figures assumes that 
a thread of execution runs atomically (i.e., non-preemptively, without interference from 
other threads in svrτ) until completion or until it blocks either on a semaphore2 (line 7, 8 
or 11) or due to invoking retrieve on another server (line 12 or 15).  Once a running 
thread blocks, another can enter a retrieve operation.  We denote global variables 
accessible to all threads using the “svrτ.” prefix, e.g., svrτ.arrow.  (“svrτ”, i.e., the 
identity of this server, is also global.)  Variables without this prefix, specifically svr′ and 
caller, are local to this thread. 
 
Use of two different semaphores requires some explanation. svrτ.sem1 is used to ensure 
that once the counter is retrieved by svrτ, requests to pull the counter away are blocked 
until svrτ has executed its critical section (the lines marked “(*)” in Figure 2). svrτ.sem2 
is used to block any retrieve requests made by svrτ until svrτ services the retrieve 
requests it received previously from others.  Starvation is avoided if the retrieve requests 
blocked on each semaphore are serviced in a first-in-first out order per V(svrτ.semi) 
invocation. 

                                                 
2 To remind the reader, a semaphore s is a concurrency control primitive that represents a 
non-negative integer counter with two atomic operations: V(s) increments s by one; P(s) 
blocks the calling thread while s=0 and then decrements s by one [9]. 
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Figure 5: retrieve initiated by svr 

 
 

6.2 Limiting counter access 
 
To achieve G2+ and G4+, it is necessary that only uncompromised servers can pass the 
counter once dvc is captured; otherwise a compromised server could manipulate the 
counter. For an A4 attacker, it would suffice to permit only admissible nodes to pass the 
counter, since admissible nodes are uncompromised by assumption.  However, for an A2 
attacker, where admissible nodes may be compromised, this simple rule does not suffice.  
Fortunately, since the servers authorized when an A2 attacker captures dvc are never 
compromised (by the definition of A2), it suffices to permit only authorized servers to 
pass or hold the counter.  Because authorized servers are hosted only on admissible 
nodes, this is consistent with the A4 case. 
 
Our protocol thus restricts counter passing to occur only between authorized servers in 
the A2 case.  This is complicated by the fact that the set of authorized servers is dynamic, 
and there is no trustworthy record of this set.  This problem can be partially alleviated by 
having a consenting server svrτ record all the servers it has consented to authorize in a 
local set svrτ.children (see line 2 of Figure 4).  For simplicity, we portray svrτ.children 
as a set of server names in our figures, though in reality a different representation is 
required. Specifically, because the ticket τ′ resulting from a delegation to which svrτ 
consented is not known to svrτ, svrτ cannot explicitly include τ′ in svrτ.children.  
However, if svrτ includes a new cryptographic key k within both svrτ.children and the 
inner ticket ζ′ that it contributes as an input to the creation of τ′, then svrτ can use k to 
authenticate requests from svrτ′.  For reasons described in Section 6.3, svrτ also must 
send a preimage resistant and collision resistant hash of k, hk, to dvc for storage in 
authrecτ′. 
 
To ensure that the counter is passed only between authorized servers, it is also necessary 
for svrτ′ ∈ svrτ.children to authenticate retrieve requests from svrτ.  Fortunately, svrτ′ 
can use the key k inserted into ζ′ above (or another) to authenticate communication from 
svrτ.  To facilitate svrτ′ contacting svrτ the first time, svrτ's address is included within ζ′ 
and τ′; svrτ′ assigns this address to svrτ′.parent (line 2 of Figure 3).  (For τsvr*, a 
predetermined constant 0 is inserted in place of the consenting server address.) 
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Figure 6: New svrτ.doOperation algorithm 

 

6.3 Revocation 
 
In Section 6.2, we described mechanisms by which servers keep track, in their children 
and parent variables, of other authorized servers (and how to authenticate them).  
Because of this, we must extend revocation to update these variables, so that servers do 
not work with outdated information about which servers are authorized.  Whereas 
initially revocation was an operation local to dvc [15], here we extend it to include 
interaction with a server to update its children variable. 
 
Specifically, before revoking a server svrτ′, dvc informs svrτ′.parent of this revocation.  
This notification indicates that dvc plans to revoke not just svrτ′ but also the servers in 
svrτ′.children, their children, and so forth.  The purpose of dvc revoking the entire set of 
delegations derived from svrτ′ is to ensure that all still-authorized servers can continue to 
access the counter for dvc.  Doing otherwise could partition the tree of delegations, and 
the counter may become inaccessible for some authorized servers.  Note that svr* is 
never part of this revoked component.  This is required since to achieve G4+, svr* must 
be able to retrieve the counter. 
 
During revocation of svrτ′, dvc informs svrτ = svrτ′.parent by issuing a request req (with 
req.opType = revoke) to svrτ.  The revoked server svrτ′ is identified in req by hk (hash 
of the key k) that svrτ sent to dvc during the delegation protocol; see Section 6.2.  This 
identifier for svrτ′ is extracted via req.getContents() (line 15 of Figure 6). This request 
induces a removal of svrτ′ (or rather k) from svrτ.children.  Also note that svrτ retrieves 
the counter (see line 19 of Figure 6) thereby ensuring that the counter is not lost when 
svrτ′ is revoked.  svrτ retrieves the counter after removing svrτ′ from svrτ.children so that 
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any subsequent requests from svrτ′ to retrieve the counter are rejected. After this 
svrτ.doOperation call, dvc deletes authrecτ′, i.e., performs dvc.revoke(svrτ′). 
Moreover, it must invoke dvc.revoke(svrτ′′) for each svrτ′′ ∈ svrτ′.children, their 
children, and so on. 
 

6.4 Disabling 
 
To achieve G4+ we require that nd* can set the counter value to its maximum value q̂  so 
as to disable dvc at all admissible nodes. The revocation mechanism presented in Section 
6.3 ensures that svr* can always request the counter. Hence, upon receiving a disable 
request, nd* performs a svr*.maximize operation that causes servers to stop responding 
to dvc.  The disable algorithm also uses a capability to authenticate the disable request; 
see [15]. 
 
Note that the nd.disable request can also be sent to another node nd hosting an 
authorized server for dvc. However, the ability of an A4 attacker to revoke and delegate 
makes it impractical to locate nodes besides nd* to disable after dvc has been 
compromised.  Though the attacker can perform a dvc.revoke(svr*) operation, this will 
not restrict svr*'s access to the counter due to the measures described in Section 6.3.  
Hence, nd* is able to complete a disable request. 
 

7 Implementation in Fleet 
 
In Sections 3−6, we presented our algorithms for coordinating capture protection servers, 
treating each capture protection server as a non-replicated object.  However, the 
coordination protocols we presented, while improving some types of protection (see 
Section 5), do exacerbate the effects of a benign or malicious capture-protection server 
failure, in that such a failure could prevent any server from being able to retrieve the 
counter or, therefore, from assisting the device in any cryptographic operations.  Consider 
nd*, for example: In order for property G4+, to be useful, it is necessary that a client can 
disable dvc at nd*, which requires nd* to be available.  More generally, if svr is down 
and another server invokes svr.retrieve(), then it is possible that all subsequent 
cryptographic operations by dvc, performed using any capture protection server, will 
block at least until svr recovers.  It is thus necessary in practice that such a protocol be 
built in a way that ensures the survivability of each capture protection server. 
 
Fortunately, the Fleet system, while being the primary beneficiary of capture protection 
in this effort, also provides a utility for building such survivable services [16].  Moreover, 
integration of this capture-protection infrastructure with the Fleet system is fairly 
straightforward; in principle, Fleet enables survivable implementations of arbitrary 
objects, of which a capture-protection server is one example; though it did require 
adaptations to both the capture-protection infrastructure and Fleet, which we describe 
below. 
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First, in our implementation, each capture protection server svr is implemented as a Fleet 
object replicated across several nodes (each running the Fleet server-side software).  As a 
result, it is no longer possible to simply designate pksvr to be pknd for the single nd 
hosting svr (see Section 3); there are now several such nodes.  Adapting the protocols to 
accommodate this, however, is a simple matter, by creating a new public key/secret key 
pair (pksvr, sksvr) for svr and delivering sksvr to each node nd participating in the 
implementation of svr, encrypted under pknd, upon creation of svr.   
 
A second consequence of replicating svr is that svr must be implemented 
deterministically, since the form of replication supported in Fleet that is appropriate for 
this application is one in which all replicas are deterministic (see [16]).  In order to 
support this, we modified the capture protection server implementation to replace random 
choices in each method invocation using a pseudorandom function keyed with (a 
cryptographic hash of) sksvr and applied to method arguments.  Provided that the 
pseudorandom function is secure (indistinguishable from a random function to those not 
having the key), then this results in no significant loss to security. 
 
Finally, we were required to modify Fleet itself to support this application, since when 
one (replicated) capture protection server calls another (e.g., to retrieve the counter), this 
involves a replicated object invoking a method on another replicated object, which was 
not transparently supported in previous versions of Fleet [16].   To accomplish this, we 
adapted the method invocation protocol from [7] to better support replicated clients. 
 
Aside from these adaptations, the implementation of capture protection in Fleet closely 
reflects the description in Section 6. 
 

8 Summary 
 
In this report we detailed a client capture protection infrastructure for use within the 
context of Fleet, a survivable object store. The innovation in this work is a simple data-
sharing protocol, for capture-protection servers, that strictly limits online dictionary 
attacks on a client device that is captured, and that achieves immediate disabling of the 
client device even with dynamically changing server populations. 
 
The capture-protection infrastructure described in this report forms a symbiotic 
relationship with Fleet.  On one hand, the capture-protection infrastructure substantially 
hardens Fleet against an important class of attack, in which a user-driven client device 
with authority to invoke method invocations on Fleet objects is captured.  This 
infrastructure prevents or substantially limits the damage that such an attacker can inflict.  
On the other hand, the availability of the algorithms in this infrastructure⎯and thus the 
availability of the client device’s private key operations⎯is particularly vulnerable to 
even the benign failure of a capture-protection server.  So, implementing each capture-
protection server as a survivable Fleet object is central to the client’s availability.  
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